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Abstract 

In this paper, we consider the nonlinear Chern-Simons-Schrödinger systems 
with special nonlinearities and external potentials. We prove that this problem 
has no nontrivial radial solution when the parameter λ  is large enough. 

1. Introduction 

The Chern-Simons-Schrödinger system (CSS system) was proposed by 
[3] and [4], which describes the feature of high-temperature super-conductor, 
quantum Hall effect, and Aharovnov-Bohm scattering etc. By using the 
ansatz and the Coulomb gauge condition which was mentioned in [1] and 
[2], the CSS system gives the following problem: 
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The existence, non-existence, and multiplicity of radial standing 
waves to (1.1) were discussed by [1] and [2], where the authors study that 
( )ug  is super linear. 

In this paper, we consider the non-existence of radial solutions to the 
following Schrödinger equation with the gauge field: 
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hypotheses: 
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(g1) ( ) ,sin uauug n=  where a is defined in (V1) and .3,2=n  

By variational methods, the authors in [5] obtain the existence and 
multiplicity of radial solutions to (1.2) depending on the parameter λ  
when ( )xV  is a radial symmetric positive function and ( )ug  is 

asymptotical linear. They also prove that (1.2) has no nontrivial radial 
solution for λ  large enough. 

Inspired by the results we mentioned above, we are interested in the 
non-existence of radial solutions to (1.2) for ( )xV  is a radial symmetric 

positive function and ( ) ,sin uauug n=  where +∈ Ra  and .3,2=n  For 

,1=n  we have ( ) .0,0 ≠∀≤≤ uau
ug  The authors in [6] obtain that 
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(1.2) has no nontrivial radial solution for every 0>λ  when .1=n  
Obviously, here for ( )ugn ,3,2=  is neither asymptotical linear nor 

super linear and ( )
u
ug  is not bounded. By the method of [5], we can 

obtain the following main result: 

Theorem 1.1. Assume that ( )xV  satisfies (V1), (V2), and (g1) holds, 

then there exists 0>λ∗  such that (1.2) has no nontrivial radial solution 

for .∗λ≥λ  

2. Non-Existence of Radial Solutions 

In this section, we prove the non-existence of radial solutions to (1.2), 

that is, Theorem 1.1. Here we use standard notations. ( )21 RrH  denotes a 

radial Sobolev space equipped with the norm: 
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Let us define the functional ( ) RR →λ
21: rHI  by 
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Similar to [1] and [5], we have the following result: 

Lemma 2.1. The functional λI  is continuously differentiable on     

1
rH ( )2R  and its critical point u is a weak solution of (1.2). Moreover, a 
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critical point u of λI  belongs to ( ),22 RC  so the weak solution u is a 

classical solution of (1.2). 

Let us recall an inequality in [5], which we will use in our proof of 
main theorem. 

Lemma 2.2. For ( ),21 RrHu ∈  we obtain that for every ,0>ε  the 

following inequality holds: 
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Finally, we prove Theorem 1.1. 

Proof of Theorem 1.1. Assume that ( )21 RrHu ∈  is a solution of 

(1.2). We obtain that there exists ( ) 0>= aCC  such that 
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where ( ) aaC =  when .3=n  

Multiplying the Equation (1.2) by u and integrating by parts, we get 
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By (2.3), (2.2), and Lemma 2.2, choosing ,1
2
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Hence, if ,8 2C>λ  then u must be zero.   
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